基于电池电压极值特征融合的采样故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

主题词:新能源汽车安全动力电池电压采样故障特征融合中图分类号:U463.633;TP277 文献标志码:A DOI:10.19620/j.cnki.1000-3703.20250342

Sampling Fault Diagnosis Based on Features Fusion Derived from BatteryVoltageExtremeValue

Ren Yonghuan1,Cheng Zhen',Zheng Binbin¹²,Sun Weijial2 (1.XiamenKingLong UnitedAutomotiveIndustryCo.,Ltd.,Xiamen;2.KeyLaboratoryofBusSafetyandPower saving Technology Enterprises ofFujian Province,Xiamen )

【Abstract】To address the high false positiverate and weak anti-interference capabilitiesof existing voltage Sampling Fault (SF)diagnosticmethods,thispaper proposesanovel diagnosticalgorithm thatutilizes modelresidual meanvalueand residual standarddeviation derivedfromvoltage extreme valueas feature values combined with covariance coeffcients to identifybattryvoltage SF.Thismethodachieves99.3%recognized precisionand0.91Intersectionover Union,ffectively resolving theproblemthatthebattery managementsystemscannotdistinguish SFfrombattrycellisses.Itcontributes to intelligent identification of battery safety risk levels and enhances the safety of electric vehicles.

KeyWords:Safety of electric vehicles,Powerbattery,Voltage samplingfault,Featuresfusion

【引用格式】任永欢,程震,郑彬彬,等.基于电池电压极值特征融合的采样故障诊断[J].汽车技术,2025(9):10-16. RENY H,CHENG Z,ZHENG BB,etal.Sampling Fault Diagnosis BasedonFeatures Fusion Derived from Batery Voltage ExtremeValue[J]. Automobile Technology,2025(9):10-16.

1前言

电池管理系统(BatteryManagementSystem,BMS)电压类报警依托于电池电压的监控,当发生电压采样故障(SamplingFault,SF)时,电压采样值因异常波动超出报警阈值亦会引发过欠压报警。(剩余8956字)

monitor
客服机器人