基于主成分分析和神经网络聚类的城市坡道行驶工况研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

主题词:坡道行驶工况主成分分析SOM神经网络 聚类分析性能测试中图分类号:U469.11 文献标志码:A DOI:10.19620/j.cnki.1000-3703.2024090

Investigation ofUrban Ramp Driving CycleBasedon Principal Component Analysis and Neural Network Clustering

SongYuzhen',Wu Zhimin’,YinXiaofeng',LeiYulong²,LiangYiming' (1.Stitute ofAutomotive Enginering,Xihua University,Chengdu 61Oo39;2.NationalKey Laboratoryof Automobile Chassis Integration and Bionics,Jilin University, Changchun )

【Abstract】Aiming at the issue of lacking slope information in urban driving cyclesused for vehicle performance evaluation,this paper proposes a methodfor Urban Ramp Driving Cycle (URDC)construction basedonSelf-Organizing Map (SOM)neural network.Typicalroaddrivingdata withurbanrampcharacteristicsiscollectedusing theaverage traficflow method.Afterpre-processing,thedataissegmentedintoshorttrips,and2O parametersrepresentingroadoperation characteristicsareselectedasthefeature parametersof theshorttrips.Thedimensionalityof these feature parameters is then reducedviaprincipalcomponentanalysis,followedbyclusteringtheshorttripsanalysisusinga SOMneural network. Accordingtotheprincipleofsmoothrampconnection,short trips with highcorelationareselecedtoconstructanurbanramp drivingcyclethat includesboth speedand slope information.Theresultsof automatictransmisionoperated in slope performancetestindicatethattheconstructeddrivingcyclecanreflectthedrivingcharacteristicsofvehiclesonroadwithurban ramp features,whichcanbeusedasthebenchmark driving cycleforperformance testof vehicledrivingonurbanramps.

Key words: Ramp driving cycle, Principal component analysis, SOM neural network, Cluster analysis,Performancetest

【引用格式】宋宇臻,吴智敏,阴晓峰,等.基于主成分分析和神经网络聚类的城市坡道行驶工况研究[J].汽车技术,2025(5):47-54.SONGYZ,WUZM,YINXF,etal.Investigationof UrbanRampDriving Cycle BasedonPrincipal ComponentAnalysisandNeuralNetwork Clustering[J].Automobile Technology,2025(5): 47-54.

1前言

目前,国内外车用性能测试基准的行驶工况多采用速度-时间曲线表达,由于缺少坡道信息,难以反映车辆在坡道特征道路上的行驶特性,进而影响车辆坡道行驶性能评估结果的准确性[1-3]。(剩余9319字)

monitor