基于高斯混合-隐马尔可夫模型的驾驶意图识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

主题词:自动驾驶 驾驶意图识别高斯混合模型隐马尔可夫模型Frenet坐标系中图分类号:U463.6 文献标志码:A DOI:10.19620/j.cnki.1000-3703.20231201

Driving Intention Recognition Based on Gaussian Mixture-Hidden MarkovModel

Shen Yu1²2,Liu Guanghui²,Ma Xuanpeng1,XuJiawen²,Yan Yuan² (1.School of Information Engineering,Gansu Minzu Normal University,Hezuo 747ooo;2.Schoolof Electronicand Information Engineering,Lanzhou Jiaotong University,Lanzhou )

【Abstract】To achieve accurate recognition of vehicle driving intentions in highway scenarios,this paper proposes a drivingintentionrecognitionmodelthatcombinesdualreferencelinesintheFrenetcoordinatewith GausianMixture Models (GMMs)andHidden Markov Models (HMMs).Themodel selectsdrivingdata fromdiferentreference linesintheFrenet coordinatebasedonvehiclepositionasobservedvariables.By integratingtheobservationprobabilitiesoutputbytheGMMat previousand subsequent time steps withthe HMM,the model identifies the vehicles’driving intentionat thecurrentmoment. Theefectivenessof themodelisvalidatedusingtheUS-101datasetfrom NGSIM.Theresultsshow that thedual-referenceline GMM-HMM model achieves recognition accuracies of 93.33% for lane keeping and 92.24% for lane changing,indicating excellent recognition performance.

Key Words:Autonomous driving,Driving intention recognition,Gaussan Mixture Model (GMM),HiddenMarkovModel (HMM),Frenetcoordinate

【引用格式】沈瑜,刘广辉,马翱鹏,等.基于高斯混合-隐马尔可夫模型的驾驶意图识别[J].汽车技术,2025(5):22-28SHENY,LIUGH,MAXP,etal.Driving IntentionRecognitionBasedonGausian Mixture-HiddenMarkovModel[J].Automobile Technology,2025(5):22-28.

1前言

道路交通事故原因分析表明,约四分之一的安全事故源于驾驶意图传达不明确[1。(剩余9483字)

monitor