基于树结构Parzen估计器的自动驾驶仿真测试关键场景生成方法

打开文本图片集
主题词:自动驾驶场景生成TPEMOTPECARLA中图分类号:U467.3;TP391.9 文献标志码:A DOI: 10.19620/j.cnki.1000-3703.20240092
Automatic Generation Method of Autonomous Driving Simulation Test ScenariosBasedon Tree-StructuredParzen Estimator
QinQin',Yang Zhisheng1,LiDaoxin1,Shen Zhiwei²,Cao Xiaolin³ (1.Shanghai Polytechnic University,Schoolof Intellgent Manufacturingand ControlEngineering,Shanghai 201209; 2.School of Electrical Engineering and Telecommunications,Universityof New South Wales,Sydney 2052; 3.College of Automotive Engineering,Jilin University,Changchun 130015)
【Abstract】In viewof theexponential increase in thenumberof keyscene scenariosgenerated in high-dimensional space,andthediicultyoftraditionalartificialconstructionorrandomsearchmethods tobalancecoverageandeficiencythis paper proposes a search method basedon single-objective Tree structure Parzen Estimator(TPE)and Multi-Objective Tree structureParzen Estimator (MOTPE).Asoftware-in-the-loopautomatedsimulationtesting framework isbuiltbyusing the CARLA simulator.Taking weather elementsasanexample,thecriticalscenario generationefectsofthediffrent search algorithmsarecompared.Theexperimentalresultsindicate thattheTPE-basedsearch methodandthe MOTPE-based method increase thenumberofkeyscenariosgeneratedby3.11timesand2.O6times,respectively,comparedtotherandomsearch method.TheMOTPEmethodis1.53times beter than TPEintermsofscenarioquality.When combinedwithscenario automaedgenerationandtesting frameworks,thesemethodsefectivelyadress theissueof explodingscenario numbers, allowing for the discovery of scenarios with high testing value.
Key words:Autonomous driving,Scenario generation,Tree-structured Parzen Estimator (TPE),Multi-Objective Tree-structured Parzen Estimator (MOTPE),CARLA
【引用格式】秦琴,杨志胜,李道鑫,等.基于树结构Parzen估计器的自动驾驶仿真测试关键场景生成方法[J].汽车技术,2025(5):39-46.QINQ,YANGZS,LIDX,etal.Automatic Generation Methodof AutonomousDriving SimulationTestScenarios BasedonTree-Structured ParzenEstimator[J].Automobile Technology,2025(5): 39-46.
1前言
随着车辆系统复杂性的提升,交通环境变化、驾驶任务多样性等因素成为自动驾驶车辆测试评价面临的全新挑战。(剩余11609字)