基于神经网络的蓄能器耐久在线智能测试方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U461.7+1 文献标志码:B DOI:10.19710/J.cnki.1003-8817.20250219

Fused Neural Network-Based Online Intelligent Testing Method for Accumulator Durability

Tao Xinyang, Zhou Yuting,Meng Kai, Han Wenbin, Liu Yuan,Fan Xue (BYD Auto Industry Company Limited, Shenzhen 518118)

Abstract:Toaddresstheproblemsof longcycletimein traditionalaccumulator durabilitytestsand low eficiencyinperformancetesting,ahybridreal-time lifepredictionmodel basedonLong Short-TermMemory (LSTM) andGeneticAlgorithm-Back PropagationNeural Network(GA-BP)isproposed.Thismodelcanmonitor the performance statusof specimens inreal time andrealize inteligent durability testing basedonthe integrationof MATLABandLabVIEW platforms.Testresultsshowthatthefailureidentificationpositionsofthismethodare consistent with the measured results,the full-cycle performance prediction error is less than 15% ,and the test timeis saved by an average of approximately 10% :

Keywords:Neural network,Accumulator,Real-timemonitoring,RUL prediction

1前言

随着汽车行业竞争日益激烈,产品开发节奏持续加快,对缩短生产周期提出了更高要求。(剩余9402字)

monitor
客服机器人