基于无人机多光谱和改进BPNN的烟草病毒病检测

打开文本图片集
中图分类号:S572;S126 文献标识码:A文章编号:1007-5119(2025)03-0098-11
Tobacco Virus Disease Detection Based on UAV Multispectral and Improved BPNN
ZHANG Yangliang1², JIANG Xueyan1, LI Min², JIANG Houlong³, JIANG Lianqiang4, GUO Leifeng²*,WANG Xinweil
(1.KeyLaboratoryofTobaco PestMonitoring &Integrated Management/Istitute ofTobaccoResearchofCAAS,Qingdao66101,
China;2.AgricuturalInfomationItuteofCeseAcademyofAgriculturalSienes,BeiingO1Chia;3.obaccoLeaf
Company,ChongingBrachf,hongingo,Cina;4.ingshanBrachoficuanobaccoopaniaa 615000, Sichuan, China)
Abstract:Thisstudyaims toidentifytobacovirus diseasebyintegrating UAV-based multispectralremotesensing technologywith animprovedBPneuralnetwork (BPNN).Multispectral imagesof healthyanddiseasedtobacoplants withvaryingdegreesof virus infectionwerecapturedusingtheDJIP4MUAV.Atotalof19 vegetation indiceswerecalculated toconstructfeaturesets for correlationanalysis.K-nearest neighbors (KNN),random forest (RF),supportvectormachine (SVM),traditional BPNN,and improved BPNN were used toperformcomparative testsonbinaryandtermaryclasificationsamples.Theimproved BPNN,with optimizationsinetworktructure,imbalanceatahandling,actiationfunctioneplacing,andotimzerancementchied 89% accuracyand anF1 scoreof O.88 forbinaryclassification, and 79% accuracywith anF1 scoreof O.76 for ternaryclassification-both outperforming traditionalalgorithms.TheseresultsindicatethatUAVmultispectraldatacombinedwithanimprovedBPNNholds applicationpotential forthedetectionof tobaccovirusdisease,providing technical supportforearlywamingand preventionof agricultural diseases.
Keywords: tobacco; virus disease; UAV; multispectral; improved BPNN
烟草病毒病是烟草生产过程中最常见且最具破坏性的病害,常年造成巨大经济损失[1]。(剩余17473字)