基于知识图谱和读者特征的图书馆智能检索与推送研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

分类号 G250.76  DOI10.16810/j.cnki.1672-514X.2025.06.008

Research on Library Intelligent Retrieval and Push Based on Knowledge Graph and Reader Characteristics

Liu Piaopiao, Chen Chen

AbstractTraditionalibraryretrievalsystemsoftenrelyonkeywordmatching,struggling tocaptureusers’deep-seatedneds, resulting inloweficiencyandpooruserexperience.Thisstudyanalyzesuserscenariorequirements inlibraryretrevalservices, designs theoverallframeworkandcoremodules,and integrates multi-dimensionalreadercharacteristics withknowledgegraph technology.Bycombining usersearch intent withtheknowledge graph,thesystemunderstandsand identifiesuserintentionsto deliverpersonalizedrecommendations.Theproposedmethodaccuratelyparsesretrievalintentions,achieves intellgentresource filtering and dynamicrecommendations,demonstratingsuperiorperformanceinresource discovery,result presentation,and user-centricrecommendationscomparedtotraditional services.Experimentalresultsshowsignficantimprovements inrecall rate,responsespeed,andusersatisfaction,providinganeectiveapproach for transforming libraryknowledgesrices.

KeywordsKnowledge graph.Readercharacteristics.Intelligentretrieval. Recommendersystems.Natural languageprocesing.

0 引言

随着互联网技术的飞速发展和数字资源的日益丰富,图书馆不仅需要存储海量的信息资源,更需要提供一种高效、精准的方式来帮助读者从中筛选出有价值的信息。(剩余9622字)

monitor
客服机器人