基于YOLOv5的行人检测系统研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对计算量冗余和精度低的问题,提出一种改进的YOLOv5行人检测模型。系统采用Ghost卷积结合Transformer自注意力机制,结合双向金字塔结构以及EIoU损失函数,将INRIA行人检测数据集按照7∶2∶1的比例分配训练集、验证集和测试集,采用SGD优化器对模型进行300个Epochs的训练,并利用训练好的权重模型对测试集进行检测,结果表明:改进模型检测的平均精度值增加了1.5%,且计算量显著降低。(剩余8071字)

目录
monitor