基于稀疏神经网络的火锅销量影响因素分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:神经网络被广泛应用于目标检测、优化组合等领域,但其往往容易过拟合。为解决过拟合问题,通常对神经网络稀疏化,这类技术目前较为成熟,如dropout。文章主要考虑在Lasso罚函数情形下,通过对神经网络连接的权重进行压缩,实现高维非线性情形下的变量选择,并使用蒙特卡洛模拟验证该稀疏神经网络的变量选择结果具有一致性。(剩余7516字)

目录
monitor