基于非线性收敛因子和标杆管理的改进教与学优化算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对教与学优化算法寻优精度低、收敛速度慢以及局部最优避免性弱的问题,提出了一种改进教与学优化算法(MTLBO)。在算法的教学和学习阶段,分别引入了非线性收敛因子调整策略和标杆管理策略。基于2种策略的随机组合形成了3种不同的MTLBOs,与标准教与学优化算法(TLBO)的对比实验结果表明,3种MTLBO均优于TLBO,其中,引入2种策略的MTLBO3取得了最佳的数值实验结果,其远优于原始TLBO。(剩余12505字)

试读结束

monitor