基于图神经网络的林分空间结构优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S750 文献标识码:A DOI:10.7525/j.issn.1006-8023.2025.03.002

Abstract:The optimizationof stand spatial structure is akey issue inachieving sustainable forest management.Traditionaloptimizationmethodsoftenexhibitloweficiencyinhandlingcomplexspatialrelationshipsandlarge-scaledata.This study proposed a stand spatial structure optimization method basedon Graph Atention Networks (GAT).An integrated spatial structure evaluation system was established using the entropy-weighted mater-element analysis method,and a graph neural network modelwas constructedbasedonstanddata fromthe Tanglin ForestFarmof the Xinqing Forestry bureauin northern Yichun,Heilongjiang Province.Themodel wasapplied to perform multi-objectiveoptimization analysis of stand spatial structure. Experimental results showed that at a 2 5 % harvesting intensity,the integrated spatial structure index improvedfrom4.336 to 7.256. The GAT model demonstrated superior performance incapturing complex spatial relationships andoptimizing multi-objectivetasks.This study provides aninnovativeandintellgentapproach foroptimizing standspatial structure and managing forests,contributing to the enhancementofforest ecosystem health and stability.

Keywords:Stand spatial structure;graph neural networks;mattr-element analysis;graph atention network;entropy weighting method

0 引言

森林生态系统是地球上最重要的生态系统之一,不仅为人类提供丰富的资源,还在调节气候、保持水土和防风固沙等方面发挥着重要作用1。(剩余15752字)

monitor