基于近红外光谱的林内枯叶跨林分间模型迁移的含水率检测方法

打开文本图片集
中图分类号:S762.2 文献标识码:A DOI:10.7525/j.issn.1006-8023.2025.03.001
Abstract:Themoisturecontentofforestfloorliterisakeyfactorinforestfireoccurrences,nditsaccuratedetectionis crucial for fire prevention.Near-infrared spectroscopy(NIRS)can directly invert moisturecontent from spectral data, enabling rapid detectionof liter moisture content.However,spectral characteristics difer between fuel types due to variations inlightintensitydataatdiffrent wavelengths,requiringseparatedetectionmodelsforliterfrom dierenttree species to match specific light intensity-moisture content inversion relationships.Collcting and labeling spectral data across differentforeststands is time-consuming,limitingthepracticalapplicationofthespectralmethod.Toaddresthis issue,this study proposesa moisturecontent detection method for forest floor liter basedon Bi-LSTM(Bidirectional Long Short-Term Memory)transferlearning.By transfering the trained modelparameters to new models,we avoid training models from scratch,thereby improving model learning eficiencyand reducing the data required fortraining.The studydemonstrates thatthe Bi-LSTMmethodsurpases the traditional inversion approach using LSTMin termsof detection accuracy.Specifically,the mean absolute errr (MAE)for Quercus mongolicaand Larix gmelinii is reduced by
0 . 6 2 % and 0 . 8 7 % ,respectively,while the mean squared error(MSE)is reduced by 0 . 2 8 % and 0 . 7 0 % ,respectively. Moreover,the Bi-LSTM-based transfer learning approach significantly lessens the reliance on labeled NIR spectraldata. With a target domain sample size of 3OO and a source domain sample size of 1 0 0 0 ,the detection model record an MAE of 3 . 2 7 % ,an MSE of 1. 10 % ,and an of 0.918.When compared to models without source domain training,the MAE and MSE show reductions of 2. 3 6 % and 1 . 0 2 % ,respectively,and an increase in of 0.114.A comparative analysis before andafterimplementingtransferlearningreveals thathismethodologyoffersanovelstrategytodiminishthetimecostasociated withmodeling moisturecontentin spectralitterand to enhancethepracticalapplicationof spectraldetection. Keywords:Liter fall;moisture content;transfer learning;deep learning;near-infrared spectrum
0 引言
林内可燃物作为森林火灾产生的必要条件之二[1],其中森林地表枯叶含水率(dead fuel forest mois-turecontent,DFFMC)作为一级引火要素是引起森林火灾的重要因素[2]。(剩余16370字)