基于深度学习的智能交通车流监测与预测研究

打开文本图片集
摘 要:为了方便交通部门改善交通拥堵问题,使用旭日X3嵌入式开发板作为硬件平台,通过YOLOv8深度学习网络识别道路上通行的车辆及其车辆类型。使用开放神经网络交换(Open Neural Network Exchange, ONNX)格式可视化编辑工具去掉了模型的输出头,将网络中的激活函数由SiLU函数更换为ReLU函数,将模型输出由80个检测类别更改为4个检测类别,在Small版本中,使用非极大值抑制算法(Non-Maximum Suppression, NMS)将最合适的检测框筛选出来,然后用SORT(Simple Online and Realtime Tracking)多目标追踪算法和匹配算法将独立帧检测到的车辆关联起来,实现车辆自动计数。(剩余6435字)