云端数据驱动的锂电池故障无监督学习早期预警

  • 打印
  • 收藏
收藏成功


打开文本图片集

Unsupervised learning early warning of lithium battery failure driven by cloud data

ZHOU Zhengyi,YANG Lin*1,MENG Yizhen1,LIHuaijin1,LU Feng2,LIU Zhisheng1, LI Yang2,WUWeikun2

(1.SchoolofechanicalEngineering,hanghaiJiaoTongUniversity,o240,China; 2.ShanghaiQiyuanGreenPowerTechnologyCo.,Ltd.,20oool,China)

Abstract:An unsupervised learning early warning method was proposed based on voltage consistency to warn earlythelithiumbateryfaultsincloudbaterymanagementtechnology.Thevoltagecharacteristicsintheeffctive chargingcyclewereextracted with measuring thedegreeofvoltage consistencybyusingaminimumneighborhood radiuswhichachieved a singlecluster number for DBSCAN (density-based spatial clustering of applications with noise);Aparameterwithdimension-onewasdefined toimprove thealgorithmgeneralizationabilitytotheactual working conditions;The hyperparameterssuchasalarm thresholdswere selected through orthogonal experiment. Theactualfault cases were verifiedandanalyzed.Theresultsshowthat forthe baterysystemswith thelowstate of charge(SOC)faults,thesinglebatteryundervoltagefaults,andthesingleconsistencyfaults,thismethodenables earlywarningmore than50days inadvance,withanaccuracyrateof 96.7% ,and can locate the cells ofsubsequently developsfaults.Therefore,earlywarningof ithium-battry-systemfailures isrealized throughunsupervisedlearning.

Keywords:electricvehicle;lithium-ionbattery(LiB);batterymanagement;clouddata; unsupervised learning; fault warning;minimum neighborhood radius

锂离子电池(lithium-ionbattery,LiB)凭借能量密度高、循环寿命长和自放电率低等优点[是目前电动汽车电源的最佳选择。(剩余12875字)

monitor