基于改进YOLO的矿卡驾驶员疲劳检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 针对现有疲劳驾驶检测报警不及时、检测精度不高以及需要人为监管的问题,提出一种改进YOLOv5s的疲劳驾驶目标检测算法。该算法使用轻量的EfficientNet骨干网络作为YOLOv5s的主干网络来进行特征提取,使模型参数大幅减少,降低模型的训练时间;同时选用SIoU作为模型的损失函数,优化模型损失计算方法,提升模型的检测精度。(剩余9963字)

monitor