基于YOLOv7⁃tiny的血细胞检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 血常规检验作为医疗诊断的一项重要方法,主要是对血液中血小板、白细胞和红细胞进行识别和计数。针对血细胞检测存在细胞形状不规则、目标尺度变化大、细胞相互遮挡等问题,提出一种改进YOLOv7⁃tiny的血细胞检测算法——EMCDModel。首先,采用可变形卷积(DCNv3)替换高效长程聚合网络的二维卷积,提出ELAN⁃DF模块,提高了不规则目标特征学习能力,降低了模型参数量和计算量;其次,采用MPDIoU替换原始的CIoU适应血细胞密集分布下的尺度变化,降低其相互遮挡导致的漏检率;在主干加入CBAM注意力机制加强对血细胞关键信息的学习,提高对血小板等小目标的检测精度;最后,通过轻量级上采样算子CARAFE替换颈部网络的最近邻插值法,强化颈部网络的特征融合能力,同时降低模型参数量。(剩余12294字)

monitor