基于特征过滤法和Stacking集成学习的无人机影像作物精细分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 针对目前多种典型作物分类中特征冗余导致同科作物混淆、分类精度低的问题,文中提出一种结合特征过滤法筛选特征和Stacking集成学习的作物精细分类方法。首先,结合敏感波段构造新型植被指数并进行阈值分割,实现作物区域提取;然后,提取不同作物的颜色和纹理特征,进而计算单类作物特征系数和作物间特征差异系数,实现各典型作物的分类特征过滤法优选;最后,构建融合多种机器学习算法的Stacking集成学习作物分类模型,其中第一层的基学习器选择随机森林、支持向量机、K⁃最近邻算法,第二层的元学习器选择逻辑回归模型,实现多种典型作物精细分类。(剩余15452字)

monitor