基于优化VMD⁃CNN⁃BiLSTM的电机轴承智能故障诊断研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 针对滚动轴承早期故障信号较弱及特征数据提取效果差,导致故障诊断准确率低以及故障诊断效率低的问题,提出一种信号处理结合深度神经网络的故障诊断方法。首先,采用变分模态分解(VMD)法提取主轴承振动数据中的特征数据;然后为了确定VMD算法中最佳的模态分量个数K及惩罚参数α,增强特征提取的效果,将最小排列熵作为适应度函数,采用全局优化能力强的正弦混沌自适应鲸鱼优化算法(CAWOA)进行参数的确定,得到最优模态分量;接着,根据最优模态分量构造特征向量,将特征向量作为CNN⁃BiLSTM网络的输入,实现故障的分类。(剩余10390字)

monitor