• 打印
  • 收藏
收藏成功
分享

基于强化学习的网络拥塞控制算法


打开文本图片集

摘  要:该文结合强化学习方法提出一种QLCC算法,此算法是将网络拥塞过程进行简化之后描述为马尔科夫决策过程,在Q-learning算法应用的基础上创新设计的新型网络拥塞控制算法。研究过程中首先介绍强化学习方法,并对网络拥塞过程中马尔科夫决策过程的构建条件及假设进行探讨,之后从框架结构、参数结构及定义、参数离散划分和更新步骤几个方面介绍QLCC算法,并采取仿真实验方法对该种新算法的网络吞吐量、公平性、随机丢包环境下的吞吐量分别进行检测,通过与其他3种传统网络拥塞控制算法进行对比分析,证实QLCC算法具有吞吐量较佳、公平性最高、抗丢包性能最优的性能,说明其是一种具有较高应用优势的智能化网络拥塞控制算法。(剩余6509字)

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。

畅销排行榜
目录
monitor