基于改进YOLO v5的轻量化苹果检测方法

打开文本图片集
摘要:为了实现苹果采摘过程中准确快速的识别,本研究提出一种融合FasterNet模型的YOLO v5改进苹果检测算法。首先在基准图像特征提取模块中使用FasterNet架构替代YOLO v5模型中的卷积块和CSPLayer,降低算法复杂度并增强小目标的特征提取能力;然后提出了利用ECIoU损失函数来预测目标位置偏差,通过增加边框角点损失来描述预测框与真实目标框之间的位置偏差信息,进一步提高了苹果检测的准确性,解决了YOLO v5算法对有遮挡的密集目标检测效果不佳的问题;最后在检测后处理阶段提出ECIoU-NMS方法以优化重叠目标框的选择。(剩余10480字)