基于CNN-BiLSTM-Attention模型的胡麻产量预测

打开文本图片集
中图分类号:S565.9 文献标识码:A 文章编号: 1000-4440(2025)07-1342-(
Flax yield prediction based on CNN-BiLSTM-Attention model
LI Xingyu',LI Yue 1,2 , GAO Yuhong2,3(1.Colfdlsi;ebHabtats,Uesi;fes
Abstract:This study proposed a deep learning-based model integrating Convolutional Neural Network (CNN),BidirectionalLongShort-TermMemory(BiLSTM)andatentionmechanismtopredictflaxyield.Themodelcombinedthe spatialfeature extractioncapabilityofCNN,the temporal dynamicmodelingabilityof BiLSTM,and the featureadaptive weighting functionof the Atentionmechanism.The model was trained using climatedata,vegetation indices,andyielddata during 2000-2020.Experimentalresultsshowed that theCNN-BiLSTM-Attntionmodel significantlyoutperformedtraditional models in prediction accuracy,with a root mean square error ( RMSE )of 316.98kg/hm2 and a coefficient of determination ( R2 )of 0.83.The model maintained good stabilityand high accuracy under interannual climate change conditions.This studyprovides technical supportforflaxyieldprediction,and itsmodulardesign frameworkcanalsobeextended tohe growth monitoring and yield prediction of other crops.
Key words:flax;yield prediction;deep learning;Convolutional Neural Network;Bidirectional Long Short-Term Memory model
胡麻(油用亚麻)是亚麻科(Liancease)亚麻属(Linum)的重要油料作物[1],其籽粒富含不饱和脂肪酸(亚麻酸、亚油酸、油酸)、木酚素和亚麻胶等活性物质,具有降血脂、降血压、降血糖以及预防心脑血管疾病等功能[2]。(剩余11298字)