基于深度半监督学习的小样本金属工件表面缺陷分割

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对工业应用场景下缺少缺陷样本的问题,提出了一种仅需要极少缺陷样本的金属工件表面缺陷分割方法。该方法结合了图像生成技术和半监督学习策略,通过利用极少缺陷图像提取的小尺寸缺陷图像来训练缺陷生成模型,然后将生成的缺陷图像嵌入到正常图像中以实现数据增广。其次,采用半监督学习策略训练分割网络,以减小生成数据与真实数据分布之间的差异对模型的不良影响。(剩余17333字)

目录
monitor
客服机器人