埃尔米特矩阵空间立方幂等保持问题

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:保持问题是在一个给定的数学结构上研究保持某种不变量的映射的问题。针对埃尔米特矩阵空间保立方幂等的问题,通过刻画在保立方幂等的实线性映射下,研究了2×2维埃尔米特矩阵空间的基底到m×m维埃尔米特矩阵空间上的像,给出了从低维到高维埃尔米特矩阵空间保持立方幂等的实线性映射的表示形式。

关键词:保持问题;不变量;埃尔米特矩阵;立方幂等;线性映射

DOI:10.15938/j.jhust.2024.05.014

中图分类号: O110.21

文献标志码: A

文章编号: 1007-2683(2024)05-0121-11

Cubic Idempotence Preserver Problem in Hermitian Matrix Space

ZHANG Haoran, XU Jinli

(School of Science, Northeast Forestry University, Harbin 150080, China)

Abstract:Preserver problems are the study of preserving maps of certain invariants on a given mathematical structure. In order to preserve the cubic idempotent of Hermitian matrix space, we study the image from the basis of 2×2-dimensional Hermitian matrix space to m×m-dimensional Hermitian matrix space, and give the representation of the real linear mapping from low-dimensional to high-dimensional Hermitian matrix space.

Keywords:preserver problems; invariants; Hermitian matrix; cubic idempotent; linear mapping

0 引 言

保立方幂等问题属于线性保持问题。(剩余17474字)

monitor