TCN-Transformer模型在鄂尔多斯盆地长8储层孔隙度预测精 准评价

打开文本图片集
中图分类号:P618 文献标识码:A 文章编号:2097-5465(2025)05-0048-09
Abstract:Porosityisacriticalparameterinreservoirevaluation.However,traditionalpredictionmethodssuferfromlimited accuracyduetotheirinabilitytoefectivelymodelcomplexnonlineargeologicalrelationships.Toimprovereservoirparameter prediction,thisstudyproposesanovelhybridmodelintegratingTemporalConvolutionalNetwork(TCN)andTransformer architectures.KeyinputloggingdatawereselectedbasedonPearsoncorelationcoefficents,andgeneticalgorihmwaseployed forhyperparameteroptimization.ThemodelwasappiedtotheChang8oillayergroupinthesouthwesternOrdos Basin,andits performance wascompared withstandaloneTransformer,CNN,andTCNmodels.ExperimentalresultsdemonstratethattheTCNTransformer modelachievessuperior performance,exhibiting lower mean absoluteerror(MAE)androtmeansquareeror (RMSE),alongwith a coefficient of determination( R2 )closer to1,indicating higherprediction accuracy.Furthermore,the modelshowsstronggeneralizationcapabilty,yieldingthelowestpredictionerrorsonanindependenttestsetwithoutadditional trainingorparameteruning.Thismethodprovidesahig-precisiontolforporosityprediction,oferingpracticalvalueforsevoir characterization and development planning.
KeyWords:porosityprediction;deep learning;TCN-Transformer model;loggingdataanalysis;geneticalgorithm
0 引言
孔隙度直接影响储层的储集能力和流体的流动性,这对油气储量和开采效率至关重要。(剩余8876字)