基于深度确定性策略梯度算法的新能源汽车动力电池充电管理方法

打开文本图片集
中图分类号:U463.63 文献标志码:A DOI:10.20104/j.cnki.1674-6546.20250170
【Abstract】To enhance batery charging eficiency,this studyaddresses the challenges in the fast charging process, includingchargingtime,theralsafety,andbaterylifespanduringfastcharging,alongsidethepooradaptabilityoftraitioal strategiesand insuficient state estimationaccuracyAninteligent chargingstrategy basedon Deep ReinforcementLearning (DRL)isproposed.Athermoelectric-coupledbaterymodel isdeveloped,employinganExtendedKalmanFilter(EKF)for accurate State Of Charge (SOC)estimation.The charging strategy isoptimized usingthe Deep Deterministic Policy Gradient (DDPG)algorithm.Policy training is acomplished through an Ornstein-Uhlenbeck (OU)noiseexploration mechanism,a multi-objectiverewardfunction,combined with experiencereplayand softupdate techniques.Experimentalvalidationonthe MATLAB platform demonstrates that the proposed method achieves acharging time of1625s.While maintaining a comparablechargingtime toconventional methods,itreduces themaximum interal batery temperature byapproximately (204号 2C ,realizing coordinated optimization of charging eficiency and thermal safety.
Key Words:Power battery,Charging management,Deep Reinforcement Learning (DRL), Thermoelectric coupling model, State Of Charge (SOC) estimation,Deep Deterministic Policy Gradient (DDPG)
1前言
随着新能源汽车的普及,快速充电技术成为缓解用户里程焦虑的关键。(剩余10650字)