基于RoBERTa的中医药专利命名实体识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

[摘 要] 中医药发明专利的成分及功能实体具有种类复杂、歧义繁多等特点。针对传统命名实体识别方法无法充分获取其中的语义特征表示,上下文信息及一词多义等问题,提出一种中医药发明专利命名实体识别模型,该模型将RoBERTa-WWM预训练模型、双向长短期记忆(BiLSTM)网络、条件随机场(CRF)三个模块串联结合,将专利摘要依次通过RoBERTa-WWM进行语义提取生成含有先验知识的语义词嵌入;BiLSTM网络增强词嵌入中的上下文特征信息;CRF解码序列,输出概率最大结果。(剩余10732字)

monitor