改进型LSTM模型在西北干旱区径流模拟中的应用
——以祖厉河为例

打开文本图片集
关键词:GWO-LSTM-Attention模型;XGBoost模型;径流预测中图分类号:TV121 文献标识码:A 文章编号:1001-9235(2025)08-0050-08
Application of Improved LSTMModel in Runoff Simulation in AridRegion ofNorthwest China: A Case Study of the Zuli River
SONGHaiping,TANGYiran,DANGWentao,WANGYibo
1.GansuProvincialDepartmentofWaterResources WaterConservancyProjectConstructionCostandFeeManagementCenter, Lanzhou73o,ina;2.CollgeofarthndEnviromentaliences,LnouUnversityanzouOa)
Abstract:InviewofthescarcityofmeasureddataintheZuliRiverBasin,theupperreachesoftheYelowRiver,aswellasthe diffculthdrologicalsimulationproblemscausedbytheintenseinterferenceofhumanactivities,thisstudyfocusedontheZuliRiver Basinin theupperreachesoftheYellowRiver.XGBoost,LSTM-Attention,andtheimprovedLSTMmodel(GWO-LST-Aention model)wereemploydtosimulate monthlyunof.Usingobservedrunof,precipitation,andonthlymeantemperaturedatafrom1980 to2020,theresearchincorporatedfeatureengineering,combinedwithextreme-valuepost-procesingandmixedlossfunction optimization.Onthisbasis,thegreywolfoptimization(GWO)algorithmwasusedtooptimizetheparametersoftheLSTM-Aention model,andteGO-T-etioodelssucted,aingteodelsabilitytoptureeio'spef mechanisms. The results indicate that: ① The improved LSTM model demonstrates superior performance in simulating the Zuli River, validating the adaptability of the improved strategies for complex hydrological processes. ② The GWO algorithm significantly enhancesthemodel'spredictionacuracyinthebasin,confirmingtheeffectivenessofoptimizationalgorithmsinparameter calibration. ③ The GWO-LSTM-Atention model requires further validationand optimization for future daily-scale simulations and monthly runoff reconstruction.
Keywords:GWO-LSTM-Attentionmodel;XGBoostmodel; runoff prediction
全球气候变暖背景下,西北干旱区水资源短缺问题日益严峻,径流作为水资源的重要指标,其精准模拟对于水资源优化配置和管理至关重要。(剩余8994字)