崇阳溪流域PRBP神经网络洪水预报模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

SI Qi', JIN Baoming1*,LU Wangming², CHEN Zhaoqingl (1.ColegeofCiviEineinguzouUvesityuzo8,Ca;2.aningFlooddroughtisastereveiote Nanping , China)

Abstract:ThePoak-Ribiereconjugategradientbackpropagationalgorithm(PRBP)ofnumericaloptimizationtechnologywasused, and21rainstormandfloodprocessesfrom1997to2O2 intheupperreachesofChongyangRiverbasinwerestudied.Therainfal volumeofsixrainfalltationsintheupperreachesofChongyangRiverbasinandthepreviousdischargeof Wuyishan Hydrological Stationwereregardedasinput,anditscorespondingdischargewasregardedasoutput;thenumberofhiddenlayerunitswas determinedbytrialcalculation,andthenPRBPneuralnetworkfloodforecastingmodelofChongyangxiRiver Basinwasestablished. Theremainingeightfloodswereusedtotestandvalidatethemodel.TheresultsshowthatcomparedwiththatoftheconventionalBP neuralnetworkodel,tonergencespdofeodelissterndthalculationspeedisviouslyiproed;thteistic coefficient of the model is greater than O.87,and the relative error of peak flowof six floods is within 10% . The forecasting accuracy meets the requirements,which can provide a basis forthe flood control department to forecast the flood.

Keywords:PR conjugate gradient method; BP neural network; flood forecasting; Chongyang River Basin

山区流域洪水往往具有破坏性强、预见期短、预报难度大的特点。(剩余8880字)

monitor