CRAKUT:融合对比区域注意力机制与临床先验知识的U-Transformer用于放射学报告生成

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:ObjectiveWeproposeaContrastiveRegionalAtentionandPriorKnowledge-InfusedU-Transformermodel (CRAKUT)toaddresstlengesofimbalancedtextdistrbtio,ackofoextalcliicalowledgeandosl informationtransformationtoenhancethequalityof generatedradiologyreports.MethodsTheCRAKUTmodelcomprises3 keycomponents,includinganimageencoder thatutilizescommonnormalimagesfromthedatasetforextractingenhanced visualfeaturesetealoedgeiusertaticopoatesiicalpriorowledgendaU-aforertatailitate cros-modal informationconversion from vision tolanguage.Thecontrastive regional atentioninthe imageencoder was introducedtoenhancethefeaturesofabnormalregionsbyemphasizingthediferencebetweennormalandabnormalsemantic features.Additionall,theclinical prior knowledge infuser within the textencoder integratesclinical history and knowledge graphs generatedby ChatGPT.Finaly,the U-Transformer was utilizedtoconnect the multi-modal encoderandtheeport decoderinaU-connectionschema,andmultipletypesofinformationwereusedtofuseandotainthefinalreport.Results We evaluated theproposedCRAKUTmodelon twopubliclyavailable CXR datasets (IU-XrayandMIMIC- .CXR′ ).Theexperimental results showed that theCRAKUTmodelachieved astate-of-the-art performanceonreport generationwithaBLEU-4scoreof 0.159,aROUGE-Lscoreof0.353,andaCDErscoreof050inMC-CXRdataset;themodelalsohadaMETEORscoreof 0.258inIU-Xraydataset,outperformingallthecomparisonmodels.ConclusionTheproposedmethodhasgreatpotentialfor application inclinical disease diagnosesand report generation.

Keywords: ChestX-ray;contrastiveregionattention;clinical priorknowledge;cross-modal; U-Transformermodel

胸片是临床实践中的基本诊断工具,广泛用于各种呼吸和心脏疾病的早期检测、诊断和管理。(剩余17496字)

试读结束

monitor
客服机器人