强化图注意力网络模型在选址路径问题中的应用

打开文本图片集
中图分类号:TP391 文献标志码:ADOI: 10.12475/aie.20250307
本文引用格式:,,.等.强化图注意力网络模型在选址路径问题中的应用[J].自动化与信息工程,2025,46(3):43-51.HUANG Shuo, ZHANG Xuexi, XIE Xingwang, et al. Application of reinforced graph atention network model forlocation routing problem[J]. Automation & Information Engineering,2025,46(3):43-51.
文章编号:1674-2605(2025)03-0007-09开放获取
Application of Reinforced Graph Attention Network Model for Location Routing Problem
HUANG Shuo ZHANG XuexiXIE XingWang ZHANG Tao (Guangdong University of Technology, Guangzhou 51ooo6, China)
Abstract:Toaddress the limitationof traditional atention network modelsinefectivelypreserving graph structural informationforLocationRoutingProblems,thispaperproposesareinforced graphatentionnetworkmodel.First,whileretaining graph structuralinformation,theencoderextracts node informationfromthe graph structurethroughatention mechanisms toobtain high-dimensional featurerepresentationsofnodesandglobal graph feature information.Then,thedecoderutilzes GatedRecurrent Units to efectivelycapture temporaldependencies innodesequencesandacquirescompletesolutions viastep-by-stepdecodng. Finaly,anauxiliaryValueNetwork isintroduced toevaluatethevalueofachaction,guiding policyupdatestoenhanctraiing efficiency.Experimentalresultsdemonstratethatthisreinforcedgraphatentionnetworkmodelcanrapidlyobtainhigh-quality solutions for LRP.
Keywords: location routing problem; reinforcement learing; graph atention network; value network; graph structure
0 引言
选址路径问题(location routing problem,LRP)是一个组合优化问题,旨在同时优化设施位置与车辆运输路径,以最小化总成本,广泛应用于物流、供应链管理等领域。(剩余10980字)