一种改进ResNet34模型的乳腺图像识别方法

打开文本图片集
本文引用格式:,.一种改进 ResNet34模型的乳腺图像识别方法[J].自动化与信息工程,2025,46(3):30-36. WANG Jinjun, CAI Yanguang. An improved ResNet34 model for mammographic image recognition method[J]. Automation & Information Engineering,2025,46(3):30-36.
关键词:乳腺图像识别;ResNet34;平行注意力残差块;科尔莫戈洛夫-阿诺尔德网络中图分类号:TP391.41; TP183 文献标志码:A 文章编号:1674-2605(2025)03-0005-07DOI: 10.12475/aie.20250305 开放获取
An Improved ResNet34 Model for Mammographic Image Recognition Method
WANG Jinjun1CAI Yanguang1,2 (l.College of Automation, Guangdong University of Technology, Guangzhou 510o06, China 2.School of Artificial Intelligence, Guangzhou Institute of Science and Technology, Guangzhou 510540, China)
Abstract: To enhance the recognition accuracy of mammographic images,an improved ResNet34 model for mammographic image recogitionmethodis proposed.BuildingupontheResNet34model,thismethod introducesaparalelatentonresidualblock (PARB)moduletostrengeniterchaeloelationsimammoapicimags,furthrextractingcricalfatureifotioto improveecogitaccacy.Aditalyiteacesterditioalultilepecetro(M)ithomogor-oldetorks (KAN) toreduce model parameters and increaserecognition speedExperimentalresults demonstratethat the improved ResNet34 model achieves enhancements of 4.0% 0.6% 8.0% ,and 4.7% in accuracy, precision, recall,and F1-Score respectively compared to the original ResNet34 model, indicating superior recognition performance for mammographic images.
Keywords: mammographic image recognition; ResNet34; paralll atentionresidualblock; Kolmogorov-Arnold networks
0 引言
乳腺癌是女性常见的恶性肿瘤之一,其发病率逐年增加[1]。(剩余7034字)