融合情感的异构图神经网络音乐会话推荐算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

本文引用格式:,.融合情感的异构图神经网络音乐会话推荐算法[J].自动化与信息工程,2025,46(3):9-16

LU Zhenye, DU Yuxiao. Emotion-enhanced heterogeneous graph neural network for music session-based recommendation algorithm[J]. Automation& Information Engineering,2025,46(3):9-16.

关键词:会话推荐;异构图神经网络;音乐情感;匿名用户推荐中图分类号:TP391.3 文献标志码:A 文章编号:1674-2605(2025)03-0002-08DOI: 10.12475/aie.20250302 开放获取

Emotion-enhanced Heterogeneous Graph Neural Network for Music Session-based Recommendation Algorithm

LU Zhenye DU Yuxiao (School of Automation, Guangdong University of Technology, Guangzhou 510oo6, China)

Abstract: To addressthe limitations ofcurrent music session-based recommendation methods foranonymous or new users such a simplisticrecommendations based solelyon short-term sesions and neglect ofemotional factors influencinguserchoices this studyproposes anemotion-enhanced heterogeneous graph neuralnetwork for music sesson-basedrecommendationalgorithm. Thealgorithmconstructsasession-basedrecommendationsystemusinghistoricaldatafromallusersandcurentsessionsviagraph neural networks,integratingmusical emotional semantics toprovide more acuraterecommendationsforanonymous/nwusers. ExperimentalresultsontheNowplayingdatasetdemonstrate thatcomparedtothesuboptimal GNN-basedesionrecommedation method, the proposed algorithm achieves a 2.1% improvement in P@20 and a 6.8% increase in MRR @20 , effectively enhancing recommendation performance.

Keywords: sesion-based recommendation; heterogeneous graph neural network; music emotion; anonymous user recommendation

0 引言

信息技术的飞速发展,如5G、智能手机、云服务等,为音乐传播带来了前所未有的机遇。(剩余10234字)

monitor