基于代数和几何组合相似度的区间值系统不确定性度量

打开文本图片集
中图分类号:TP181 文献标志码:A
',²(1,安徽合肥230011;2,湖北十堰442002)
An uncertainty measurement for interval valued systems based on algebra geometric combination similarity
', ²
(1 ,Anhui VocationalTechnical,Hefei,Anhui230,Cina; 2School InteligentConnected Vehicles, ,Shiyan,442002,China)
Abstract:Uncertaintymeasurement,asanimportantdataevauationtoolinthefieldsmachinelearninggranularcomputing,can quantifytheuncertaintydependenciesbetweendataatributes.However,existing intervalvalueinformationsystemuncertanty measurementmethodsdonotcosiderthegeometricstructurebetweendataatrbutes,whichafectstheaccuracyuncertaintymeasurementresults.Toimprovethisissue,firstly,ahybridsimilaritymethodcombiningalgebraicgeometricperspectivesisproposed forintervalvaluedinformationsytems;hen,asedonthenewsiilarityewintervalvaluedroughsetmodelwasconstructednd thetheoryinformationgraulationinformationstructureforintervalvaluedinformationsystemssproposed;Finalyfouruncertaintymeasurementmethodsforintervalvaluedinformationsystemsweredefined,namelyknowledgegranularity,inforationamount,roughentropy,informationentropy.Theoreticalevidencehasshowntheefectivenessthesefourmethodsinucertainty measurement.Thenumericalexperimentalresultsonthefacerecognitiondatasetshowthatthefourproposeduncertaintymeasurement methodsallhavegoodmeasurementperformance,comparedwithexistinguncertaintymeasurementmethods,thefourproposed methods have higher measurement performance.
Keywords;roughset;intervalvalueinformationsstem;uncertaintymeasurement;knowledgeganularity;informationamount;ough entropy;information entropy
粗糙集理论是一种处理数据分析中不精确性和不确定性的数学工具,已成功应用于智能系统、机器学习、决策分析和模式识别等领域中[1-3]。(剩余36289字)