基于多维数据关联的航天观测任务衍生技术研究

打开文本图片集
引用格式:,,,等.基于多维数据关联的航天观测任务衍生技术研究[J].指挥控制与仿真,2025,47(6):69-75.TANJ,GUOQ,ZHANGXL,etal.SpaceobservationtaskderivationbasednultidmensioaldataasocationJ].ComandCotrol&Simulation,2025,47(6) :69-75.
中图分类号:TP311 文献标志码:A DOI:10. 3969/j. issn.1673-3819.2025.06.010
Space observation task derivation based on multidimensional data association
TAN Juan¹,GUO Qi2 ,ZHANG Xueliang³,ZHANG Wenbao² (1.Beijing Institute of Tracking and Communication Technology,Beijing 1Ooo94,China; 2.Key Laboratory of Aerospace Information Applications of CETC,Shijiazhuang O5oo81,China; 3.The 54u Research Institute of CETC,Shijiazhuang O5Oo81,China)
Abstract:With the increasingdemandforremotesensing observation fromusers in various industries,thecurentapplication modeof "pasive response touserdemand"forspaceobservationresources is becoming more andmore limited.Therefore,research onspaceobservation mision derivation technology basedonmultidimensional dataasociation iscariedout. Firstly,thediferentiatedspaceresourcesaremodeled toaccuratelydescribethecapabilityaributesofvariousspaceresourcesandspaceobservationmision knowledge.Secondly,forallkindsof explicitorimplicitspaceobservationrequirements,he method basedonlarge language modelisused tounderstandtherequirementsand extractthe task elements; Then,amulti-semantic inference network isconstructedtoimplement thederivedreasoning of aerospace observationtasks. Afterthat,thechangerulesofthehistoricaltaskresourcesupplyanddemandrelationshipof typicalusersare minedtoautomaticallyrecommend spaceresources.Finally,thederivationprocessofspaceobservationmision inemergencydisasterrelief scenarioistakenasanexample to verifythemethod.Theexampleanalysis shows thatthismethodcannotonly esure the accuracy,but alsoeffectivelyimprove theoperation eficiencyanduseeficiencyoftheaerospaceobservationsystem.
Keywords:space observation;task derivation;multi-semantic inference network
随着在轨卫星数量和能力的不断提高,用户的观测需求越来越旺盛,航天观测在农业生产、应急救灾等领域内的作用越来越重要。(剩余9672字)