基于Fert-YOLO的高梁育性检测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S514 文献标识码:A 文章编号:1671-8151(2025)04-0046-11

Abstract:[Objective]Asanimportantcropforbothfoodand energyproduction,sorghum'sfertilitydetectioniscrucial forarietybreedingandyieldimprovement.However,traditionaldetectionmethodssuferfrom loweficiencyduetocomplexfield backgrounds,necesitating highly eficientandaccuratedetectiontechnologies.[Method]ThisstudyproposedFert-YOLO,a lightweightdetectionmodelforsorghumfertilityasedonYOLOv8n.First,multipleoflinedataaugmentationmethodswere usedtoenhancedatadiversityand improve themodel’sgeneralizationability.Second,toreducenetworkcomplexitywhileeffectively improvingdetection performance,StarNet wasused toreplaceYOLOv8n's backbone featureextraction network.In thefeature fusionstage,theC2Fmodule was redesigned by incorporating mixed localchannelatention(MLCA)mechanism, strengthening the network'sabilitytocapturecriticalfeatures.Finally,alightweight sharedconvolution detection(LSCD) head was introduced,which sharedconvolutionallayerparameters tosignificantlyreduce modelsizeandcomplexity.Results] TheFert-YOLO modeldemonstrated outstanding performance in sorghum fertilitydetection.Compared to theoriginal YOLOv8n model, it achieved a 1.5% improvement in mean average precision( (Map0,5) ,further enhancing detection accuracy. Additionally,,the model’s,floating-point operations per second (FLOPs)and parameters were reduced by 40.0% and 47.8% , respectively,significantly improving inference speedanddeployment eficiency.Whencompared toothercommonsingle-stage lightweightdetectionmodels,Fert-YOLOshowedclearadvantagesinbothdetectionaccuracyandmodelefficiency.Conclu sion]Thisresearchprovidedareliabletechnicalsupportforeficientsorghumfertlitydetectioninfieldconditions,contributing significantly to smart sorghum breeding and precision agriculture.

Keywords:Sorghum,Fertilitydetection,YOLOv8n,Model optimization

高粱[Sorghumbicolor(L.)Moench]是中国主要的粮食作物之一,其可用于食用、酿造、生物燃料、饲草等多方面,在国民经济中占有重要地位[1-2]。(剩余14111字)

monitor