基于ShuffleAttention相似目标检测

——以 SA-YOLOv7为例

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4;TP183 文献标识码:A 文章编号:2096-4706(2025)11-0106-08

Similar Object Detection Based on Shuffle Attention

-Taking SA-YOLOv7 asan Example

REN Yuzhen1,FAN Zhongkui1,FENG Zhenying²,ZHU Mei1 (1.SchoolofSoftwareEnginering,JangxiUniversityofScienceandTechnology,Nanchang33013,China;2.Guangdong Nikola Energy Technology Co.,Ltd., Guangzhou 51070o, China)

Abstract: YOLOv7achieves excellent results in object detection,but there is stilla problemofhigh false detectionrate insimilarobjectdetection.ThemainreasonisthatYOLOv7hasinsuffcientabilitytoextractfine-rainedfeatures.Tosolvethe above problems,thisstudyproposesaSA-YOLOv7bectdetectionnetwork.Specificallywithoutchangingtheoverallstructure ofELAN,theatentionmoduleSAismergedwithittofoaSA-ELANmoduletoobtainmorechannelandspatialfeature information,therebyimprovingthedetectionaccuracyofsimilarobjects.The modelconductsalargenumberofcomparative experiments onpublichandand glovesimilarobjectdatasets,explores theinfluenceof thenumberand positionofSAadedto theYOLOv7 network ontheresults.Italsoreveals the underlying principleofSA'srole and deepens the understandingof the Attention Mechanism.The experimental results show that the detection accuracy of SA-YOLOv7 is 7.7% higher than that of YOLOv7, and its mAP@0.5:0.95 is 1.8% higher than that of YOLOv7. Compared with the latest YOLOvl1, it also has a 0.9% (2 detection accuracy advantage.TheresearchonSA-YOLOv7 provides assistance for thedevelopmentofsimilar objectdetection technology.

Keywords: Deep Learning; YOLOv7; Shufle Attention; similar Object Detection

0 引言

随着深度学习的发展,机器视觉取得了长足进步,目标检测作为机器视觉的重要研究方向,涌现出众多优秀算法[,它们在ImageNet、COCO、CIFAR-100等知名数据集上取得了优异的检测结果。(剩余12853字)

monitor