HT-PeRCNN:基于Hessian矩阵迹权重的物理编码递归卷积神经网络

打开文本图片集
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)11-0025-09
HT-PeRCNN: Physics-encoded Recurrent Convolutional Neural Network Based on Hessian Trace Weight
(InformationService Center,BinnanOilProductionPlantofShengli OilfeldBranch,ChinaPetroleumand ChemicalCo.,Ltd, Binzhou 256600, China)
Abstract: In recent years, Physics-Informed Neural Networks (PINNs) have achieved significant progressas a Deep Learning-basedpproachforslvingPartialDifrentialEquations (PDEs)inariousfelds.However,PNNsstillsuffrfro problemsoflow training eficiencyand slow inference speed.To address these problems,this study proposes an improved methodofPhysics-encodedRecurrentConvolutionalNeuralNetwork(PeRCNN)basedontheHesian traceweight,named HT-PeRCNN.The methoduses the Hessiantrace as a weighted factorto optimize the weighted distributionofloss function, enhancing modelstabilityand extrapolationcapability.Experimentalresults show that HT-PeRCNN improves solutionaccuracy by 50% comparedtoPeRCNNinmultiple PDE-solvingtasks.
Keywords:PDE;PINN;PeRCNN;Hessian traceweight
0 引言
偏微分方程(PartialDifferential Equations,PDEs)广泛应用于流体力学、热力学和气象模拟等诸多科学和工程领域[1-3]。(剩余19641字)