基于Swin-UNet血细胞分割方法研究

打开文本图片集
收稿日期:2023-09-08
DOI:10.19850/j.cnki.2096-4706.2024.05.027
摘 要:血细胞分割结果是医生诊断病情的一项重要依据。医学检测血细胞方法容易受外界干扰且效率低下,传统图像分割模型精确度低,对背景杂乱的血细胞图像分割效果差。为提高血细胞分割效率与准确性,提出一种基于Swin-UNet改进的血细胞分割算法,首先通过迁移学习引入Swin-UNet在ImageNet上预训练模型参数作为特征提取前端,提高模型的泛化能力;其次根据Swin-UNet算法改进下采样模块归一化函数,提高模型训练速度。(剩余10022字)