基于扩张因果卷积模型的冷库商品销售量预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:疫情环境下,供应链受到不良影响,库存及市场投入量关乎着社会以及民生的稳定。但是供给与需求无法达到完全一致的现象普遍存在,这使存储管理上面临两方面难题:要么库存过剩增加成本,要么库存不足造成供给短缺。在这种情况下,对商品销售量预测进行深入的研究是一件非常重要的事情。传统的一维卷积神经网络(CNN)在销售量预测上存在信息泄露的问题,且其结构难以获取较长的记忆。(剩余8446字)

目录
monitor