基于CSI的对称加密端到端通信系统

打开文本图片集
中图分类号:TN918.91 文献标识码:A DOI:10.7535/hbkd.2025yx04006
CSI-based symmetric encryption end-to-end communication system
AN Yongli1²,LI Zongrui¹,BAI Haifei¹,MI Xueyu²,3 (1.CollgeofArticial Inteligence,North ChinaUniversityof ScienceandTechnology,Tangshan,Hebei O630oo,China; 2.Tangshan Key Laboratory of Air and Ground Smart Transportation,Tangshan,Hebei O63Ooo,China; 3.College of Emergency Management and Safety Enginering,North China Universityof Science and Technology, Tangshan,Hebei O630oo,China)
Abstract:Toaddress the isueof information leakage caused bykeytheftduring transmision,asymmetric encryptio endto-endcommunicationsystem basedonchannel stateinformation(CSI)was proposed.The proposedsystem employed convolutional neural networks toconstructthetransmiter,receiver,andkeygenerator,optimizing theencodinganddecoding process in anend-to-end manner.Atthesame time,itleveragedthereciprocity,random time-variability,andspatial uniquenessofwirelesschannels to measure the CSIandgenerate keys fromlegitimateusers,encryptingtheoriginal information.ThesimulationresultsdemonstratethatunderRayleighfading,Ricianfading,andfrequency-selectivemultipath fadingchanels,thebiterorrates(BER)of theproposedsystemislowerthanthatofbaselinemodelssuchasthesymmetric encryptionsystem basedondepconvolutional generative adversarial networks within thetested signal-to-noiseratio(SNR) range.In high-SNR scenarios,theimprovementof BERcanreach18dB.Aditionally,infouratack scenarios,suchas brute force andkey leakageattacks,theBERof eavesdropperisapproximatelyO.5,indicatinganinabilitytodecrypt the information.The proposed systemeliminates thenedforkeydistribution,reducing theBER whileenhancing eavesdropping resistance,thus providing a novel approach for secure communication.
Keywords:wireless communication technology;end-to-end communication;physical layer security;AutoEncoder;symmetric encryption
近年来,深度学习(deep learning,DL)发展迅速,许多学者将其引人到无线通信领域中,从物理层的角度对通信系统进行优化[1]。(剩余16288字)