基于改进YOLO v5的橙子果实识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对自然环境下橙子检测存在枝叶遮挡、相邻果实重叠等情况而导致检测效果差的问题,提出一种改进的YOLO v5方法。首先,在主干网络部分使用RepVGG(re-param VGG)模块替换原始C3模块,加强网络对特征信息的提取能力;其次,在颈部网络使用鬼影混洗卷积(ghost-shuffle convolution)代替原有的标准卷积,能够在保证精度的前提下,降低模型参数量;再次,在预测头前加入ECA(efficient channel attention)注意力模块,能够更加准确定位目标信息;最后,引入EIOU(efficient intersection over union)损失函数加速预测框的收敛,提高其回归精度。(剩余8410字)

目录
monitor