基于改进YOLOv4算法的番茄叶部病害识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。(剩余12982字)

monitor