基于多特征提取和麻雀搜索算法优化XGBoost的变压器绕组松动诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:

针对使用单一特征量诊断变压器绕组松动,在不同负载条件下存在交叠和抗干扰能力不足的问题,提出一种基于核主成分分析(KPCA)和改进麻雀搜索算法(SSA)优化极端梯度提升(XGBoost)的变压器绕组松动振动诊断方法。首先,从时域、频域和熵值3个维度提取适用于变压器多传感器振动信号的多种特征量;其次,通过网格搜索优化的KPCA对特征量进行降维;最后,构建基于XGBoost的故障诊断模型,并采用改进麻雀搜索算法调参,实现不同电流大小下变压器绕组松动故障准确识别。(剩余21614字)

monitor