基于缺失森林模型的稀疏函数型数据修复方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:为解决函数型数据缺失插补问题,在函数型数据分析框架下,以缺失森林模型(MF)为基础,采用基于条件期望主成分分析的函数型插补方法PACE进行初始插补,并通过K-means聚类借助样本之间的相关性插补,给出了一种融合类信息的函数型多重插补方法。模拟数据插补实验结果表明,在不同缺失比例(5%~55%)下,本文方法相较于Hot.deck、MF、均值插补、PACE、MFP、SFI、HFI等7种插补方法,更能保证插补的准确性和有效性。(剩余10304字)

monitor