基于对比学习的驾驶员异常驾驶行为检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.41 文献标志码:A DOI: 10.20104/j.cnki.1674-6546.20240304

【Abstract】In the processof driving a vehicle,the complex and changing environment inside the vehicle,the change of lightingconditionsandthediversityofdrivers’behavioralposturesaffectthedetectionandrecognitionofabnormaldriver behavior.Toaddressthisisue,thispaper proposesadriverabnormaldriving behaviordetectionalgorithmbasedoncontrast learning.Thepaperfirstlyconsiders driver’sdriving behaviordetectionasabinaryclassficationtask,andutilizesacontrast learningapproach tocompare driver’snormaldriving withabnormal driving samplesandto improve the performanceof the modelbycontrastinglossfunctions.Secondlythedepthimagesrightaheadandabovethedriverservesasinputstosolvethe problemsofcomplex in-vehicleenvironmenttochangethelight intensityand blindspots inviewpointbyproviding thedepth informationofthedriver.Finaly3DconvolutionisintroducedinthelightweightnetworkMobileNetV2,andeoratioof channel blending isaddedtotheconvolutionlayerofeachbotleneck structuretoimprovetheauracyofrecognition.Test results show that accuracy of the proposed algorithm reaches 94.18% in the Driver’s Abnormality Detection (DAD) dataset and ROC AUC reaches O.962,which shows theefectivenessof the algorithm indriver’sabnormal behaviordetection.

Keywords:Abnormal driving behavior detection,Contrast learning,Second classification,3D Convolution Neural Networks(CNN)

【引用格式】李仲伦,于光达,杨帅,等.基于对比学习的驾驶员异常驾驶行为检测算法[J].汽车工程师,2025(8):29-36. LI ZL,YUGD,YANG S,etal.Driver Abnormal Driving Behavior Detection Algorithm Basedon Contrast Learning[J]. Automotive Engineer, 2025(8): 29-36.

1前言

HighwayTraffic SafetyAdministration,NHTSA)的数据, 80% 的交通事故和 16% 的公路死亡是由驾驶员分心驾驶引起的。(剩余12456字)

monitor