基于改进DPC-IGWO-Elman的负荷分解方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

[摘 要] 针对现有负荷分解方法负荷特征单一、分解精度低的问题,提出一种结合改进密度峰值聚类算法与改进灰狼算法优化Elman神经网络的非侵入式负荷分解方法。首先针对密度峰值聚类算法(DPC)在处理复杂数据集时缺乏自适应能力的问题对局部密度的计算方法进行改进,再将改进DPC算法应用于用电器负荷数据的聚类分析,从而得到用电器的工作状态标签并进行编码;之后运用Elman神经网络构建分解模型同时引入改进灰狼优化算法(IGWO)对网络参数进行寻优,最后根据网络输出编码获取用电器工作状态标签并根据对应负荷特征信息进行有功功率拟合,完成负荷分解。(剩余9389字)

monitor