基于BP神经网络的深部巷道围岩力学参数反分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

[摘要] 基于BP神经网络算法原理,借助matlabR2021b神经网络工具箱建立深部巷道围岩力学参数位移反分析模型,利用正交试验和Flac3D数值模拟软件建立神经网络的学习训练样本,对深部巷道的四个围岩力学参数粘聚力C、内摩擦角φ、泊松比ν、弹性模量E进行反演计算。结果表明:将参数反演结果代入Flac3D有限元数值模拟软件,计算出的巷道拱顶沉降和两帮收敛值与实际监测值相比非常接近,相对误差小、精度高。(剩余134字)

试读结束

monitor