基于数据驱动的范数最优迭代学习控制

  • 打印
  • 收藏
收藏成功


打开文本图片集

[摘要] 在系统模型确定的前提下,传统的范数最优迭代学习控制(NOILC)可以有效提高伺服系统的跟踪精度。但是在实际控制过程中,系统模型参数往往是变化的,从而导致控制器性能的下降。为此,提出了一种基于数据驱动的范数最优迭代学习控制方法。以系统的输入输出为依据,建立系统估计模型的代价函数,对代价函数进行偏微分处理,得到一种基于数据驱动的非参数模型辨识方法,最后将此模型辨识方法和NOILC相结合。(剩余183字)

monitor