樟子松木材密度的近红外光谱特征提取最优 算法及预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:S781.33 文献标志码:A 文章编号:1673-923X(2025)10-0183-12

Research on the optimal algorithm for near-infrared spectral feature extraction and prediction model of Pinus sylvestris wood density

QINZijian,LIYaoxiang,ZHANGZheyu,CHENChengwu,LIYiwei (SchoolofchanicalndElectricalEngieering,NortheastForestrUersityHarbino,Heilongjangia)

Abstract:【Objective】WooddensityisapivotalindicatorforevaluatingwoodqualityTherefore,throughtheaccuratepredictionof Pinussylvestisoodsitytlicyodnieleangiatlatifo rationalutilizationofwoodresourcesandthecultivationofforest res.【Method】ThisstudyfocusesonPinussylvestriswoodnd utilizesNIRnon-destructivetestingtechnoogy.Itemploysfeatureextractionalgorithmsincludinguinformativevariableeliination (UVE),compeitieadaptiveeweghtdamling(CAR),successeprjectiosalgitasellasgridarch supportvectoracheegesso(Grid-V),geticgorit-uportvectoracheegressn(G-V)dprtilewa optimization-supportvectormachneregresson (PSO-SVM).Thesealgoritmsaresequentiallyappledforfeaturebandextractionnd SVMmodeling.Consequntlyanidealnear-ifraedpredictiomodelforPinussystisoddensityisevelopd【Result】inety sevensamplesofinussylestisoodweredvidedtotraiingandestigsetsina1:3atio.Grid-G-Vad modelswereestablishedusingthefullspectrumofnear-infrareddata.Tosimplifythenea-ifraredmodels,threefeatureetraction algorithms-uniformativevarableelimination(UVE)ompetitivedptiveeweigtedamplng(CARS),ndsuccesiveptio algorithm(SPA)wresequentiallpledtoelectspectralbands.SubsequentlyGrid-SV,GA-SVM,andPO-SVagorits wereemployedtomodeltheelectedwavelengths.UtimatelyitwasfoundthateGA-SVmodelutilzingfeaturebandstracted byUVE,exhibited the highestaccuracyand bestperformanceforpredicting Pinus sylvestris wood density,withan R2 value of 0.910 8 andRMSEPof0.Oo59forthepredictionset.【Conclusion】OptimizedtheSVMmodelforPinussylvestriswooddensityusing nearinfraredspectroscopyfeatureextractionalgoriths,therebyachievingrapidandprecisepredictionofooddensity.Thisapproachot onlyminimizes wastageof woodresourcesbutalsomaximizestheirutiltandvalue.Mreover,itprovidesatheoreticalfoundation andtechnical guidanceforenhancingandoptimizingthecultivationofsuperiortreespeciesandforestmanagementpractices.These advancements propel the wood industry towards greater efficiency and sustainability.

Keywords:narinfraredspectroscopy;woodensityatureextraction;supportvectormachneregresion;Pinusslvetris

木材是人类生活中最广泛的天然化合物及原材料之一。(剩余17732字)

monitor
客服机器人