基于机器学习算法的湖南沅陵森林火灾风险预测

打开文本图片集
中图分类号:S763.2 文献标志码:A 文章编号:1673-923X(2025)10-0059-10
Machine learning algorithm-based forest fire risk prediction in Yuanling, Hunan Province
Abstract:【Ojetie】Indertouratelyssstheskleveloffrestfireshelprestpatroloptizersouceltad improvefireprevetecyYuangountyakeasthseahectasedoeataofain,fueleloical andhumaactivityactors,macinelingalgoriasuedtouildafrestfccueepredictiomodel,ichsan reference significanceforforestfireprevention.【Method】Withcomprehensiveconsiderationofterrain,fuel,meteorologynd humanactivities,1ivingfactorsereetractedinesdyreaincdingelevationslope,slopediecton,omalidetatio index,vegeaioiaioieddroodsoidetle fromwatersystem,andthedrivingfactorsofforestfrewereevaluated.Thehistoricalfirepointdataofthestudyareaisobtained basedonthe MODIS fireproduct.Theforestfreoccurrnceprediction modelwasconstructed byamachinelearningalgorithm,and thepredictionaccuracyoftemodel wascomprehensivelyevaluatedbyusing theconfusionmatrix evaluationindexandtheROC curve.Theforestfireocurrencepredictionmodelwasconstructedbyamachneleaingalgorithm,andthepredictionaccuracyof themodelwascomprehensivelyevaluatedbyusingtheconfusionmatrixevaluationindexandtheROCcurve.【Result】Thedistance fromtheroadandthedistancefromtheresidentialareaaretwodrivingfactorswiththelargestweight,andotherdrivingfactorsalso affecttheocuenceofforestfresTheOCcurvesoftreemodelssowedtateadomforestmodeladoodaccuracyiththe accuracy reaching 78.15% andthe area under the curve 0.85,while the logistic regresson prediction model had the accuracy reaching 74.81% and the area under the curve 0.81.The accuracy of the SVM prediction model is 70.74% ,and the area under the curve is 0.79. 【Conclusion】Therandomforestmodelshowsbeterpredictionabilitythanthelogisticregressionmodelandsupportvectormacine model.Theareaswith highand extremelyhigh riskof forest fireaccounted for 26.62% inthestudyarea.The forest firerisk level map is helpfulfortherelevantdepartmentstotakerelevantpreventivemeasuresandeffectivelyprotectthesafetyofforestresources.
eywords:machine learning;random forest;supportvector machine;firerisk;predictionmodel;driving factol
森林具备多重生态服务功能,在气候调节、水源涵养、风沙防护、土壤保持以及固碳释氧等方面发挥着无可替代的作用[1]。(剩余13626字)